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The calculation of molecular coordination numbers (MCNs),

and topological and geometrical analysis of the environment

of molecules in the crystal structures of 23 067 organic

compounds, shows that Kitaigorodskii's close-packing model,

assuming the predominance of MCN = 12, works correctly in

only a few cases, whereas MCN = 14 is the most frequent. To

explain this fact the close-packing model is extended with the

model of the thinnest covering of space by deformable

molecules. It is shown that the packing of molecules of

arbitrary shape and composition can be better described with

geometrical, but not topological, parameters of their short-

range environment, which is conveniently characterized by

molecular Voronoi±Dirichlet polyhedra.
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1. Introduction

At present, the principle of close packing suggested by

Kitaigorodskii (1973) is commonly used to describe a mole-

cular crystal. According to this model a molecule is repre-

sented as a solid bounded by exterior surfaces of overlapped

van der Waals spheres, corresponding to the atoms of the

molecule. The surfaces, bounding different molecules, should

adjoin, but should not overlap each other and should not be in

empty voids. It is the arrangements of molecules, providing a

large number of contacts, which are termed close packings. In

order to form a close packing, molecules tend to be occupied

so that the `bumps' of one molecule interact with the `hollows'

of another. To characterize the density of molecular packing,

Kitaigorodskii used the packing coef®cient (k), which is equal

to the ratio of the volume of all the molecules in the unit cell to

its volume, and also the number of molecules, surrounding a

molecule in the crystal structure, which is termed the mole-

cular coordination (or contact) number (MCN). In terms of

the close-packing model, MCN is determined as the number of

molecules, which have at least one contact with a given

molecule. Kitaigorodskii assumed that the basis for close

packing of organic molecules is a layer with MCN = 6. The

superposition of such layers results in a close packing with

MCN = 12. This model conforms topologically to the close-

packing of hard spheres, commonly used in inorganic crystal

chemistry (Wells, 1986), however, there is no strict proof of its

correctness. Kitaigorodskii's analysis of the features of mole-

cular packings in crystals of about 150 organic compounds has

shown that MCN = 12 is the most common. At the same time,

according to Kitaigorodskii (1973), MCN = 14 and 10 is less

frequent and the model of close-packed layers could not give a

reasonable explanation. Thus, Kitaigorodskii has given the

packings of adamantane (k = 0.69) and hexamethylene-



research papers

502 Peresypkina and Blatov � Coordination numbers Acta Cryst. (2000). B56, 501±511

tetramine (k = 0.72) molecules as examples of close-packed

crystal structures. The adamantane molecules are arranged on

a face-centred cubic (f.c.c.) lattice with MCN = 12, whereas in

the crystal structure of hexamethylenetetramine the centroids

of molecules are arranged on a body-centred cubic (b.c.c.)

lattice and each molecule has 14 neighbours (Figs. 1a and b).

Kitaigorodskii explained this fact by the `convenient' shape of

the hexamethylenetetramine molecule. However, both mole-

cules have an identical symmetry, similar structure and a shape

close to spherical. Therefore, the problem of why MCN = 12 is

observed for one molecule, but another molecule has MCN =

14, remains unsolved. In later investigations (Fischer & Koch,

1979; Ze®rov & Zorky, 1995) the predominance of MCN = 14

instead of 12 was found in crystal structures of organic

compounds, but this fact was not fully explained. Evidently,

the close-packing model as applied to organic crystals requires

further development. Certainly, the molecules in a crystal tend

to ®t together closely, obeying the principle of the maximum

®lling of space (Vainshtein et al., 1983). However, is this

arrangement always similar to the close packing of hard

spheres?

There is another way to describe molecular crystals. It is

based on a model of the thinnest space covering (Blatov &

Serezhkin, 1997). According to this model, structural groups

(molecules in this case) are represented by spheres with

different deformability (unlike the close-packing model, in

which the molecules are represented by solids of ®xed shape).

Filling the whole empty space and mutually deforming the soft

spheres, ultimately generates convex polyhedra (Voronoi±

Dirichlet polyhedra, VDPs), thus forming a normal (face-to-

face) partition of space. Once a sphere is circumscribed

around each VDP, one can obtain a space covering, i.e. the

arrangement of solids (intersected spheres in this case), where

any point in space belongs at least to one of them. As in

packing, a covering can be characterized by the covering

coef®cient (Kc), which may be calculated as the ratio of the

volume of a sphere circumscribed around a VDP to the

volume of the whole space. If all structural groups are

equivalent to each other, the covering coef®cient may be

calculated as follows

Kc � Vs=VVDP; �1�
where VVDP and Vs are the volumes of a VDP and a sphere

circumscribed around it, respectively. A covering with the

minimum value of Kc is termed the thinnest. In three-dimen-

sional space, the thinnest covering corresponds to an

arrangement of the centers of intersected spheres on a b.c.c.

lattice (Kc = 1.46), whereas the close packing of spheres is

characterized by a larger value of Kc (2.09). The deformation

degree of spheres forming a partition is proportional to the

value of their overlapping (Vos) after the formation of the

appropriate covering of space, since (Blatov & Serezhkin,

1997)

Vos � VVDP�Kc ÿ 1�: �2�
Thus, the minimum value of Kc corresponds to the smallest

deformation of soft spheres. Therefore, if the soft structural

groups (atoms or molecules) tend to arrange so that the

volume of empty space between them is a minimum, according

to the principle of maximum ®lling of space, one can expect

that their centroids should arrange on a b.c.c. lattice with

coordination number 14 and a VDP in the form of the

Fedorov cuboctahedron (truncated octahedron). The `14-

neighbour rule' follows from this model (Blatov & Serezhkin,

1997), so that in compounds comprising easily deformable

groups, each group tends to surround itself by 14 similar

groups. The validity of this rule was proved by the analysis of

crystal structures of �5000 mononuclear coordination

compounds of various compositions (Blatov & Serezhkin,

1997) and of molecular crystal structures of simple substances

(Peresypkina & Blatov, 1999).

Thus, there are two basic approaches to the description of

the structure of a molecular crystal:

Figure 1
(a) Adamantane (T = 188 K) and (b) hexamethylenetetramine molecules,
represented as molecular (left) and lattice molecular (right) VDPs.
Topologically both lattice VDPs are Fedorov cuboctahedra, however, the
lattice molecular VDP of the adamantane molecule is geometrically
similar to a rhombododecahedron (c).



(i) The traditional approach based on the close-packing

model of molecules and on the related close-packing model of

hard spheres. Within this approach, van der Waals radii of

atoms are used to separate a domain of space belonging to a

molecule and to ®nd intermolecular contacts together with

MCN (Bondi, 1964; Ze®rov & Zorky, 1978).

(ii) The approach where VDPs of atoms and inter-

dependent models of space partition and space covering are

applied for the same purpose. Note that VDPs were ®rst used

for the determination of atomic coordination numbers by

Frank & Kasper (1958).

In practice the distances between the atoms of adjacent

molecules usually deviate from the sum of appropriate van der

Waals radii. Therefore, the selection of intermolecular

contacts by means of van der Waals radii is rather subjective

(Ze®rov & Zorky, 1978). If VDPs are used, the presence of an

intermolecular contact is determined by the presence of

common faces of VDPs of atoms belonging to different

molecules. The strength of the contact can be estimated by

values of solid angles 
i of these faces expressed as a

percentage of the whole solid angle (4� sr). The value of 
i

indicates the presence of an intermolecular contact, if it

exceeds the triple error of determination of solid angles

(�1.5%) and corresponds to a `basic' face of VDP (i.e. if it

intersects a segment connecting centers of considered atoms;

Peresypkina & Blatov, 1999). If there are contacts between a

pair of molecules, the relative force of the intermolecular

interaction can be estimated by the sum of the solid angles 
i,

corresponding to these contacts, normalized by the sum of

solid angles for all non-valence bonds formed by a central

molecule (
�), thus


mol �
X

i


i=
� � 100%: �3�

In this case, a molecule is represented by its `molecular' VDP

constructed from the VDPs of separate atoms, which can be

non-convex (Fig. 2a). If the interior structure of contacting

molecules is ignored and only their centroids considered

during VDP construction, the VDP obtained will be convex

(Fig. 2b) and its shape characterizes the arrangement of

molecules around the central one. Therefore, we shall term the

VDP constructed in this way as a `smoothed' molecular VDP.

In particular, the number of faces of a smoothed molecular

VDP is equal to MCN, and its dimensionless normalized

second moment of inertia is

G3 �
1

3

� � Z
VDP

R2dVVDP

� �
=V

5=3
VDP; �4�

where R is the distance between the centroid of a molecule

and some point inside the VDP. G3 characterizes the unifor-

mity of the short-range environment of a molecule, and its

degree of sphericity (the sphere has the minimum value of

G3 = 0.07696 among all three-dimensional solids; Peresypkina

& Blatov, 1999). Note that the Fedorov cuboctahedron and the

rhombododecahedron (Figs. 1b and c), corresponding to the

arrangements of particles in the models of the thinnest

covering and close packing, have a high degree of sphericity

(G3 = 0.07875 and 0.07854, respectively). As was shown by

Peresypkina & Blatov (1999), the two described methods of

MCN determination give similar results in most cases, but only

the method using VDPs allows one to make unambiguous

conclusions about the MCN value in the case of strongly

distorted molecular packing.

To characterize the topology of molecular packing, Pere-

sypkina & Blatov (1999) used VDP constructed from a

sublattice of molecular centroids. Hereinafter we shall term

this VDP the `lattice' molecular VDP (Fig. 2c). Although

lattice and smoothed molecular VDPs constructed for the

same molecule in a given crystal structure can coincide with

each other, in general, they are not identical to each other

(Figs. 2b and c). A smoothed molecular VDP characterizes the

local topology of molecular packing, taking into account only

those molecules directly connected. In particular, smoothed

molecular VDPs do not always form a partition of space.

Lattice molecular VDPs characterize the global topology of a

packing as a whole and form a partition of space, but the

number of faces of such a VDP is not always equal to MCN
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Figure 2
(a) Molecular, (b) smoothed and (c) lattice VDPs of a molecule of
dicyclopropanaphthalene (SIWFUZ10). The smoothed VDP (type 14/22-
1) can be transformed onto the lattice VDP (type 12/18-1) by `tightening'
two quadrangular faces, as shown by arrows.
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(Figs. 2a±c). The coincidence of these two types of molecular

VDPs is usually observed in the case of packing with suf®-

ciently isometric molecules. For instance, in the crystal struc-

tures of hexamethylenetetramine (HXMTAM) and the high-

temperature modi®cation of adamantane (ADAMAN02) the

molecules are arranged according to models of the thinnest

covering and close packing of spheres, respectively. Smoothed

and lattice molecular VDPs in each of these crystal structures

are identical to each other: the Fedorov cuboctahedron and

rhombododecahedron, respectively (Figs. 1b and c). Herein-

after the reference codes of compounds in the Cambridge

Structural Database are given in brackets. In the low-

temperature modi®cation of adamantane (ADAMAN08) the

molecular packing still has MCN = 12, but the lattice mole-

cular VDP is the strongly distorted Fedorov cuboctahedron.

This fact indicates that near each molecule two additional

molecules occur, which are not immediately connected with

this molecule (Fig. 1a). In addition to the topological features

of lattice molecular VDP, its geometrical characteristics can

also be used to analyze the features of molecular packing. In

particular, packing (Kp) and covering (Kc) coef®cients,

calculated as the ratio of the volume of the insphere and

circumsphere of the lattice molecular VDP, respectively, to its

volume. It should be noted that Kp has a different meaning to

the coef®cient k used by Kitaigorodskii which characterizes

the arrangement of molecular centroids, disregarding the

interior structure of molecules. In particular, unlike k, Kp

cannot exceed the value 0.7405, corresponding to the

arrangement of molecular centroids on the lattice of one of

the close packings. If the value of Kc is close to 1.46, the

topology of the molecular packing considered is close to the

topology of the thinnest covering of space by intersecting

spheres. The uniformity of molecular packing is the dimen-

sionless, normalized, second inertia moment of VDP obtained

by averaging over lattice molecular VDPs of all Z non-

equivalent molecules in a crystal structure and calculated

according to the formula

hG3i �
1

3

� � �1=Z�PZ
i�1

R
VDP�i� R

2dVVDP�i�

�1=Z�PZ
i�1 VVDP�i�

� 	5=3
: �5�

In particular, the hG3i value of a monosystem molecular

packing (Z = 1) is equal to G3 of lattice molecular VDP

calculated using (4).

Thus, organic crystal chemistry needs to develop a uniform

model which can explain the topological features of molecular

packings, in particular, different values of MCN. Moreover, it

is not known how effective is Kitaigorodskii's model, because

it has not been tested with modern crystal structure data. This

study was performed to de®ne more exactly the ®eld of

applicability and the correctness of the models of close

packing, and the thinnest covering to describe the features of

molecular arrangements in crystal structures of organic

compounds.

2. Experimental

For this investigation 27 886 structures without metals or

disordered atoms were taken from the Cambridge Structural

Database (1996). Crystal structures incompletely determined

and compounds with errors in the experimental data found by

the program package TOPOS (Blatov et al., 1999) were also

omitted. The calculation of MCN for a compound was

performed in two steps. First, the presence of interatomic

contacts and their type (valent, van der Waals or speci®c) was

Figure 3
The distribution of MCNs for monosystem crystal structures, calculated
considering (a) all intermolecular contacts and (b) only strong
intermolecular contacts (
mol > 1%). (c) The distribution of MCNs for
the crystal structures containing crystallographically non-equivalent
molecules of identical chemical composition, considering only strong
intermolecular contacts.



determined in the crystal structure using the program AutoCN

(Blatov et al., 1999). The second step involving construction of

the molecular VDP, the corresponding smoothed and lattice

molecular VDPs, and the calculation of MCN was carried out

using the program ADS (Blatov et al., 1999). Out of 27 886

compounds, 2477 contained crystallographically different

molecules of identical chemical composition and 2342

compounds contained chemically different molecules. This last

group was not considered, because the features of packing in

their crystal structures depended on differences in the shape

and size of non-equivalent molecules. In particular, MCNs of

these molecules are frequently too large (up to MCN = 36) or

too small (MCN = 4). For instance, in the crystal structure of

N-benzoylglycyl-l-histidyl-l-leucine pentahydrate

(FACCIV10), the tripeptide molecule, being much larger than

a molecule of water, has MCN = 35, whereas the water

molecules have MCN = 6, 7 or 8. The smallest MCN = 4 is

realised for water molecules in the crystal structure of methyl-

2-acetamido-2-deoxy-�-d-glucofuranosidono-3,6-lactone

monohydrate (HANNUF). Thus, all conclusions were

based on the analysis of two samples, comprising

23 067 monosystem and 2477 polysystem molecular

crystal structures, respectively.

3. Results

Our results (Table 1, Fig. 3a) show that MCN values

in monosystem crystal structures vary in the range 8±

22; MCN = 14 is the most frequent and MCN = 16 is

next. Other MCN values, including MCN = 12, do not

exceed 10% of the sample. 23 067 smoothed mole-

cular VDPs, corresponding to the MCNs determined,

are divided into 4555 combinatorial±topological

types, and only 11 VDP types are realised frequently

enough (for each of them the frequency exceeds 1%

of the sample size, Table 2). Among these 11 types

seven tetradecahedra and one hexadecahedron are

combinatorially similar to the Fedorov cuboctahe-

dron, i.e. can be transformed to it by a small number

of elementary steps of `tightening' faces or edges, or

`splitting' edges or vertices (Blatov & Serezhkin,

1997, Figs. 4a±c), rather than to the rhombododeca-

hedron (1±4 steps rather than 4±8 steps, respectively).

The Fedorov cuboctahedron is the most frequent

among all VDPs (13.6% of the total amount of VDPs

and 23% of all tetradecahedra). Note that almost all

frequent smoothed VDPs belong to the so-called

general combinatorial±topological types. All their

vertices are trihedral (i.e. three edges meet at each

vertex) and the number of vertices of a VDP (v)

depends on the number of faces (f) (Blatov &

Serezhkin, 1997)

v � 2f ÿ 4: �6�
As mentioned by Blatov & Serezhkin (1997), general

VDPs are combinatorially stable: their topology does

not alter over suf®ciently small (for instance, thermal)

motions of atoms. VDPs, for which (6) is not ful®lled, are

termed special and are usually rare. Thus, the above-

mentioned rhombododecahedron is an example of a special

combinatorial±topological VDP type. Only one type of

tetradecahedron (14/22-1) of all the VDP types given in Table

2 is special (it has two vertices, at each of which four edges

meet, Fig. 2b), and can be easily transformed either to the

Fedorov cuboctahedron or to the rhombododecahedron. The

only type of dodecahedron, which gives more than 1% of the

total number of VDPs, is a slightly distorted rhombododeca-

hedron (can be transformed by `tightening' four, usually small,

faces to vertices).

To determine the in¯uence of the presence of weak inter-

molecular contacts on the results of MCN estimation, another

calculation which considers only the contacts with 
mol > 1%

was performed. As a result, the predominance of MCN = 14 is

observed, but with slight changes in the MCN distribution

(Table 1, Fig. 3b), namely:

(i) the range of MCN values is extended;
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Table 1
MCN distribution for the sample with 23 067 organic compounds.

MCNs occupy no less than 1% of the sample.

Variant of MCN calculation considering
all faces of molecular VDP

Variant of MCN calculation considering
molecular VDP faces with 
mol > 1%

MCN
Number of
compounds

Relative
part (%) MCN

Number of
compounds

Relative
part (%)

14 13 362 57.9 14 11 809 51.1
16 3618 15.7 12 3921 17.0
13 1733 7.5 13 3209 13.9
12 1536 6.7 16 2000 8.7
15 1360 5.9 15 1107 4.8
18 787 3.4 18 296 1.3
17 398 1.7 11 273 1.1
The range of MCNs = 8±22 The range of MCNs = 6±22

Table 2
The distribution of smoothed molecular VDPs on the combinatorial±topological
types for the sample with 23 067 monosystem organic compounds.

The combinatorial±topological VDP types occupy no less than 1% of the sample. The
combinatorial±topological VDP type is written as f=vÿ k, where f and v are the numbers
of VDP faces and vertices, respectively, and k is the ordinal number of the VDP type with
f and v given.

Variant of MCN calculation considering
all faces of molecular VDP

Variant of MCN calculation considering
molecular VDP faces with 
mol > 1%

VDP type
Number of
VDPs

Relative
part (%) VDP type

Number of
VDPs

Relative
part (%)

14/24-1 3142 13.6 14/24-1 2778 12.0
14/24-2 1629 7.1 12/20-1 1426 6.2
14/24-3 1072 4.6 14/24-2 1424 6.2
14/24-4 736 3.2 14/24-3 931 4.0
12/20-1 592 2.6 14/24-4 582 2.5
14/24-5 492 2.1 13/22-1 433 1.9
14/24-6 404 1.8 13/22-2 415 1.8
14/24-7 349 1.5 14/24-5 394 1.7
14/24-8 260 1.1 12/20-2 389 1.7
14/22-1 234 1.0 13/22-3 336 1.5
16/28-1 226 1.0 14/24-6 291 1.3

14/24-7 272 1.2
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(ii) the number of compounds with MCN = 12 and 13

increases sharply;

(iii) the number of compounds with MCN = 14 and 16

decreases.

A similar distribution is also observed in the crystal struc-

tures of compounds containing crystallographically non-

equivalent molecules of identical composition (Fig. 3c),

however, the number of odd values of MCNs is larger

compared with the distributions for monosystem crystal

structures.

The distribution of smoothed molecular VDPs on combi-

natorial±topological types obtained without considering weak

molecular interactions also changes compared with results of

the exact calculation (Table 2), namely:

(i) the total number of combinatorial±topological VDP

types in the sample decreases from 4555 to 3836;

(ii) three types of tridecahedra appear among the most

frequent polyhedra;

(iii) the relative part of dodecahedra increases. The VDP

type 12/20-1 (a distorted rhombododecahedron) takes second

place after the Fedorov cuboctahedron; the VDP type 12/20-2

appears among 12 types of VDPs, giving more than 1% of the

sample, increasing by 1.1%;

(iv) the relative part of all tetradecahedra and hexadeca-

hedra decreases.

These changes in the topology of the environment of

molecules can be explained by the disappearance of faces of

molecular VDPs caused by neglecting weak intermolecular

contacts. If a molecule with some atoms connected by such

contacts with atoms of a central molecule has other stronger

contacts, ignoring the weak contacts yields a decreasing

number of faces of the appropriate molecular VDP. In that

case, the shape and number of faces of the smoothed mole-

cular VDP should be kept and MCN remains unchanged. If a

molecule is connected with the central molecule only by these

forgotten weak contacts, this molecule should no longer be

considered to be in contact with the central molecule.

Therefore, the number of faces of the smoothed VDP of a

central molecule and, consequently, the MCN decrease by

unity. Thus, considering only strong intermolecular contacts

during the MCN calculation results in a decrease in the rela-

tive part of the large MCN = 14±22 and an increase in the

relative part of the small MCN = 6±13. The decrease of the

total number of combinatorial±topological VDP types can be

explained by the transformation of some VDP types to other

types already presented in the sample, caused by the loss of

one or several faces. Since the break or appearance of weak

intermolecular contacts can be formally considered a result of

the small motion of molecules, neglecting contacts with 
mol >

1% causes the decrease of the number of combinatorially

unstable smoothed VDPs with small faces. Thus, the above-

mentioned special type 14/22-1 is not included in the list of

frequent VDPs, since it is transformed mostly in the dodeca-

hedron 12/18-1 by `tightening' two small quadrangular faces

(Fig. 2b). In some cases, it also loses one or both tetrahedral

vertices, for instance, being transformed to a VDP of the type

12/19-1 or 12/20-1. At the same time, the analysis shows that

almost all the frequent general types of polyhedra keep the

leading position if one considers all or only strong inter-

molecular contacts. Henceforth, we shall analyze only the

results of the analysis of the monosystem molecular crystal

structures without considering the weak intermolecular

contacts (
mol > 1%).

The rather small number of combinatorially different lattice

VDPs (487 types, Table 3) indicates that each type of lattice

VDP corresponds to several types of smoothed VDP, the

number of which depending on the composition and structure

of the molecules packed identically. At the same time, analysis

of the distributions of values of geometrical characteristics

Figure 4
Three-stage step-by-step transformation of smoothed VDP (type 14/24-4)
for a molecule of 2,2,4,4,6,6-hexaphenylcyclotriphosphazatrien
(HPCYPN) onto its lattice VDP (the Fedorov cuboctahedron, type 14/
24-1) by (a) `splitting' an edge into a face, (b) `tightening' an edge to a
vertex and `splitting' it to another edge, i.e. by `reversing' an edge, and (c)
`tightening' a face into an edge. The arrows show the path of
transformation, thin lines indicate the position of edges and faces after
the transformation.



(Kp, Kc and G3) of lattice molecular VDPs, relating to the

same combinatorial±topological type, shows that there is no

unambiguous correspondence between the topology of a

polyhedron and its geometrical shape. Moreover, statistically

the VDP type can be considered random, because the distri-

butions of Kp or Kc values for any given VDP type and also for

a random sample of compounds, corresponding to arbitrary

VDP types, are similar to each other and close to the Gaussian

(polynomial) distribution with small positive skewness.

As in the models of molecular packing described above

where an arrangement of spherical objects is considered

explicitly or implicitly, one can expect that these models

should correctly describe isometric molecules whose shape is

close to spherical. Therefore, 130 structures with quasi-sphe-

rical molecules were studied in detail, with a sphericity degree

for their lattice molecular VDPs of 0.07854 �G3� 0.07875. In

this case, these VDPs fall between the ideal Fedorov cuboc-

tahedron and the ideal rhombododecahedron, depending on

the degree of deviation from a sphere. The values of Kp for

quasi-spherical molecules also form a pseudo-Gaussian

distribution with small positive skewness and vary in the range

0.56±0.74. The average hKpi = 0.66 is closer to the value

characteristic of the thinnest covering (0.6802) than to the

value typical of close packing (0.7405). Only ®ve compounds

of the whole sample with completely solved crystal structures

may be described by an undistorted close packing of spheres,

namely acetylene (ACETYL02), hexaaminobenzene

(ZZZWOU01), hexachlorocyclohexane (HCCYHB),

congressane (CONGRS) and dodeca-(dimethylamino)-cyclo-

hexaphosphazahexaene (PNDMAM10, see Figs. 5a±e). The

values of Kc in the sample considered form a similar distri-

bution within the range 1.46±2.09, with a mean of 1.72. One

can see that the values of Kc for quasi-spherical molecules lie

within the range limited by the typical values of the thinnest

covering and close packings. The value Kc = 2.09, character-

istic of close packing, corresponds to the ®ve aforementioned

compounds with Kp = 0.74. The ideal covering with Kc = 1.46

corresponds to molecules of only three compounds, namely,

hexamethylenetetramine, dodecamethyl-hexasila-tetrapho-

spha-adamantane (HMSIPA) and dodecamethyl-hexasila-

tetraarsa-adamantane (MESIAD), see Figs. 1(b) and 6(a)±(c).
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Table 3
The distribution of lattice molecular VDPs on their combinatorial±
topological types for the sample with 23 067 monosystem organic
compounds.

All faces with 
mol > 1% were taken into consideration during VDP
calculation; the VDPs occupy no less than 1% of the sample. See also the
headnote to Table 2.

VDP type Number of VDPs Relative part (%)

14/24-1 8802 38.2
12/18-1 2756 12.0
14/24-4 2697 11.7
14/24-2 2425 10.5
16/28-2 808 3.5
14/24-7 739 3.2
14/24-8 737 3.2
16/28-3 481 2.1
16/28-4 444 1.9
18/32-1 235 1.0

Figure 5
Molecules with packing topologically equivalent to a close packing of
hard spheres: (a) acetylene, (b) hexaaminobenzene, (c) hexachlorocyclo-
hexane, (d) congressane and (e) dodeca(dimethylamino)cyclohexaphos-
phazahexaene, represented as molecular (left) and lattice molecular
(right) VDPs.
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It should be noted that there is no strict correspondence

between the coef®cients of packing and covering, although

there is correlation between their values. For instance, the

range Kp = 0.575±0.680 corresponds to the packings of

hexamethylenetetramine (HXMTAM), tetracyanomethane

(TCYMET), trimethylamineboran (ZZZVPE01), 3,7,10-

triaza-2,4,6,8,9,11-hexasilabicyclo(3.3.3)undecane (LEBWIY)

and 2,6,15-trithia(3±4,10±7)-metacyclophane (VAMMEB), see

Figs. 7(a)±(d), with Kc ' 1.46±1.47.

4. Discussion

The results obtained do not con®rm Kitaigorodskii's

assumption that MCN = 12 is preferable for molecular crystals

of organic compounds and allow the predominance of MCN =

14 to be discussed. According to the model of thinnest

Figure 6
The molecules of compounds, whose packing corresponds to the ideal
covering of space, represented as their lattice VDPs: (a) dodecamethyl-
hexasila-tetraarsa-adamantane; (b) dodecamethyl-hexasila-tetrapho-
spha-adamantane. Both molecules have topologically similar molecular
VDPs (c).

Figure 7
Molecular (right) and lattice molecular (left) VDPs of molecules of (a)
tetracyanomethane, (b) trimethylaminoborane, (c) 3,7,10-triaza-
2,4,6,8,9,11-hexasilabicyclo(3.3.3)undecane and (d) 2,6,15-trithia(3±4,10±
7)-metacyclophane.



covering, this fact indicates that most of the molecules in the

crystal structures investigated are essentially deformed.

Evidently, most of the real molecules are not absolutely hard

or absolutely soft; they have a different degree of hardness. To

consider the molecules from this point of view, let us accept

the coef®cient of covering its lattice VDP as a measure of

hardness (softness). For quasi-spherical molecules (G3 �
0.07875) the values of this criterion vary in the range 1.46�Kc

� 2.09; the greater the value of Kc the harder the molecule. It

should be emphasized that one should consider the `softness'

of a molecule not only as a deformity, but also as a degree of

deviation from the spherical shape, because the asphericity of

a molecule stipulated by its structure features can be consid-

ered as a result of the `deformation' of a hypothetical isomer

of spherical shape. For instance, the molecule of hexamethyl-

enetetramine can be considered as `soft', although, evidently,

it has a similar deformity to the adamantane molecule of

similar shape (Figs. 1a and b). At the same time, in comparison

to adamantane, it is already `distorted' because four methine

groups are substituted on the smaller N atoms. However,

packing with Kc ' 1.46 is more often formed by molecules,

which can be represented as hard quasi-spherical nuclei

wrapped in an outer layer of voluminous and easily deform-

able groups such as the aforementioned adamantane deriva-

tives (HMSIPA, MESIAD). In other cases the outer layer is

not dense enough and allows the penetration of adjacent

molecules according to the `bumps and hollow' principle as,

for instance, in tetracyanomethane molecules (TCYMET, Fig.

7a), whose packing is characterized by the values Kp = 0.66,

Kc = 1.47 and MCN = 14. The molecule of pentaerythritol

(PERYTO, Fig. 8) should be considered as `hard', because its

exterior surface is formed by slightly deformable hydroxyl

groups. The packing of pentaerythritol molecules is char-

acterized by Kp = 0.73, Kc = 2.06 and MCN = 12. The trans-1,4-

dichloro-1,4-dinitrosocyclohexane molecule (BOCNOW,

Fig. 9) has an intermediate degree of hardness. The large

substituents located on different sides of the conventional

plane of the cyclohexane ring make its motion rather dif®cult,

but not enough to forbid some deformation. In this case the

covering and packing coef®cients are equal to 1.74 and 0.70,

respectively, MCN = 14, where the smoothed molecular VDP

is the Fedorov cuboctahedron. For comparison, the volumi-

nous substituents at C atoms in the hexa-

chlorocyclohexane molecule (HCCYHB)

make the motion of a molecule so dif®cult

that it behaves as a hard sphere in terms of

the packing topology (Fig. 5c). Taking into

consideration that the shape of the over-

whelming majority of molecules in the

sample is far from spherical, one can assume

that the model of the thinnest covering

should be realised for crystals of organic

compounds much more often than the close-

packing model. This hypothesis explains the

predominance of MCN = 14 in the whole

range of G3 values for the molecules of an

arbitrary shape.

The Fedorov cuboctahedron is the most

frequent among lattice molecular VDPs

(Table 3). The difference in relative parts of

the polyhedra in the form of the Fedorov

cuboctahedron among smoothed (12.0%)

and lattice (38.2%) molecular VDPs shows

that there are rather effective coverings,

whose local topology differs from the

topology of the thinnest covering. Evidently,

their occurrence is caused by the asphericity

of molecules. For the combinatorial types

listed in Table 2, the frequency dependence

of lattice molecular VDPs of a given type on

their degree of sphericity (and, therefore,

the sphericity of appropriate molecules),

expressed by G3, indicates the predomi-

nance of Fedorov cuboctahedron VDPs in

the G3 values where there are lattice mole-

cular VDPs in an overwhelming majority of

molecules (Fig. 10a). The minimum G3 value

of the sample is 0.07854, with a maximum of
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Figure 8
(a) Molecular and (b) lattice molecular VDPs of the pentaerythritol molecule.

Figure 9
(a) Molecular and (b) lattice molecular VDPs of the trans-1,4-dichloro-1,4-dinitrosocyclo-
hexane molecule.
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0.58898 [for the lattice VDP of dimers of octadecanoic acid

(STARAC07, Fig. 11)]. In this case, 97% of all lattice VDPs

are characterized by G3 varying from 0.07854 to 0.11000. At

the minimum G3 value all lattice molecular VDPs are Fedorov

cuboctahedra. At increasing G3 (decreasing the uniformity of

crystal structure, because in this case hG3i = G3) the number of

VDPs of a given type decreases (Fig. 10a). Within the range

0.07854 � G3 � 0.07875, conventionally accepted for quasi-

spherical molecules, the Fedorov cuboctahedron is much more

frequent than lattice VDPs of any other type, which does not

exceed 20% (Fig. 10b). In the range corresponding to non-

spherical molecules the number of lattice VDPs of the

Fedorov cuboctahedron decreases, but yields no other type.

It was mentioned above that the ideal close packings or the

thinnest coverings are scarcely realised in molecular packings.

How can we explain the fact that the Fedorov cuboctahedron

is the most frequent lattice VDP, but the rhombododecahe-

dron is so rare that in the sample studied only 18 lattice VDPs

of this type were found? It is of interest that all 18 rhombo-

dodecahedra have G3 � 0.08250 and nine of them have G3 =

0.07875, i.e. are ideal (they correspond to close packings in the

crystal structures of various modi®cations of the ®ve

compounds mentioned above). At

the same time the range of G3

values, where the Fedorov cuboc-

tahedron exists, is much wider. The

minimum G3 value of the sample

corresponds to the ideal Fedorov

cuboctahedron and the maximum

value (G3 = 0.58898) also corre-

sponds to this VDP type, although it

is strongly distorted (Fig. 11). At

least two aspects cause such a rare

frequency of rhombododecahedra.

Firstly, the narrow G3 range where

the rhombododecahedron exists is

stipulated by its combinatorial

instability, because it is a special

VDP. With an arbitrarily small

motion of molecular centroids, the

tetrahedral vertices can be split

onto two vertices, so that the

combinatorial properties of the

VDP changes. Therefore, a rhom-

bododecahedron can deform

without changing the topology in

only high-symmetry crystal struc-

tures, where all molecules of one

packing type move coherently.

Secondly, a rhombododecahedron

is infrequent even in the packing of

quasi-spherical molecules (G3 �
0.07875), because it has the

maximum covering coef®cient (Kp <

2.09 for all other combinatorial

VDP types found with G3 �
0.07875). Therefore, a close packing

can be considered as the `worst'

covering among all suf®ciently

uniform arrangements of molecules,

so it can only be realised for hard

quasi-spherical molecules. At the

same time the Kp value, corre-

sponding to the thinnest covering, is

insigni®cantly `worse' than the

maximum Kp value; therefore, the

Fedorov cuboctahedron can

describe the packing topology of
Figure 11
(a) Molecular and (b) lattice molecular VDPs of a dimer of octadecanoic acid.

Figure 10
(a) Amount of the most frequent lattice molecular VDPs (in percentage of the sample), depending on
their sphericity degree. The curves 1±7 characterize the parts of the VDP types 14/24-1 (the Fedorov
cuboctahedron), 12/18-1 (with hexagonal faces), 14/24-2, 14/24-4, 14/24-7, 14/24-8 and 16/28-2 in the
sample, respectively. (b) Relative parts of the most frequent lattice molecular VDPs (of the amount of
VDPs with a given G3 value), depending on their sphericity degree. The curves 1±8 characterize the parts
of the VDP types 14/24-1 (the Fedorov cuboctahedron), 12/18-1 (rhombododecahedron with hexagonal
faces), 14/24-2, 14/24-4, 14/24-8, 16/28-2, 14/24-7 and 12/14-1 (rhombododecahedron) in the sample,
respectively.



many molecules with intermediate hardness or softness. With

an arbitrary arrangement of molecules, the Fedorov cubocta-

hedron is likely to predominate over other lattice VDP types

owing to its higher frequency. The regular Fedorov cubocta-

hedron has 14 rather large faces with little difference in area,

therefore, it could be considered as being combinatorially

stable, i.e. being able to keep its combinatorial properties

under the motions of the crystal structure over wider limits

compared with lattice VDPs of other types. This explains the

difference in ratios of VDP types at small and large G3 values

(Figs. 10a and b). The sample of quasi-spherical molecules is

characterized by the rather large number of lattice VDPs with

the combinatorial properties of the Fedorov cuboctahedron.

The more signi®cant the deviations of sphericity, for a set of

molecules whose centroids are arranged on a b.c.c. lattice, the

more probable the presence of small VDP faces. The presence

of small faces of the VDP disturbs its combinatorial stability,

because these faces and the corresponding weak inter-

molecular contacts can easily disappear by distorting the

crystal structure. With large G3 values the Fedorov cubocta-

hedron becomes combinatorially less stable, its frequency in

the sample of lattice molecular VDPs decreases, but remains

the most frequent (Fig. 10b). Thus, in the range of G3 values

which corresponds to the majority of molecules, the VDPs

with the combinatorial properties of the Fedorov cuboctahe-

dron are the most favorable statistically and, consequently, a

molecule of `random' shape prefers this type of VDP. There-

fore, it is the combinatorial stability of the Fedorov cubocta-

hedron that results in advantages for the model of the thinnest

covering of space over the close-packing model of spheres for

the description of organic compounds containing molecules of

an arbitrary shape and hardness.

5. Conclusions

The results of this study show that the topological properties

of molecular VDPs (namely, MCN or combinatorial proper-

ites), used as the main characteristics of molecular packing in

the papers cited previously, have a random nature and are not

directly related to the physical characteristics of molecules.

The use of the geometrical parameters of VDP (G3, Kp and

Kc), which do not strictly correlate with the topological

properties of VDP, is physically more valid. In particular, the

occurrence of MCN = 12 does not yet indicate the close

packing of molecules, because the Kp value can be small

enough. Similarly, vice versa: MCN = 14 does not allow one to

state unambiguously that the packing of molecules cannot be

described with the close-packing model; it is necessary to take

account of the Kc value. Certainly, in some classes of organic

compounds, whose molecular packings are characterized by a

narrow range of variation of geometrical characteristics of

molecular VDPs, the topological changes of the molecular

environment allow one to catch ®ne effects of structure

reorganization. A typical example is the aforementioned

change in the number of faces of the lattice molecular VDP at

the transition between the low- and high-temperature modi-

®cations of adamantane. A more detailed investigation of this

problem is the subject of further research.
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